124 research outputs found

    Power Efficient IP Lookup with Supernode Caching

    Get PDF
    Abstract-In this paper, we propose a novel supernode caching scheme to reduce IP lookup latencies and energy consumption in network processors. In stead of using an expensive TCAM based scheme, we implement a set associative SRAM based cache. We organize the IP routing table as a supernode tree (a tree bitmap structure

    Prediction of fully metallic {\sigma}-bonded boron framework induced high superconductivity above 100 K in thermodynamically stable Sr2B5 at 40 GPa

    Full text link
    Metal borides have been considered as potential high-temperature superconductors since the discovery of record-holding 39 K superconductivity in bulk MgB2. In this work, we identified a superconducting yet thermodynamically stable F43m Sr2B5 at 40 GPa with a unique covalent sp3-hybridized boron framework through extensive first-principles structure searches. Remarkably, solving the anisotropic Migdal-Eliashberg equations resulted in a high superconducting critical temperature (Tc) around 100 K, exceeding the boiling point (77 K) of liquid nitrogen. Our in-depth analysis revealed that the high-temperature superconductivity mainly originates from the strong coupling between the metalized {\sigma}-bonded electronic bands and E phonon modes of boron atoms. Moreover, anharmonic phonon simulations suggest that F43m Sr2B5 might be recovered to ambient pressure. Our current findings provide a prototype structure with a full {\sigma}-bonded boron framework for the design of high-Tc superconducting borides that may expand to a broader variety of lightweight compounds.Comment: 5 page

    FeSiO4H2 stabilized at subducting slab conditions: A geologically viable water carrier into the Earth's lower mantle

    Get PDF
    Hydrous minerals hold the key to unlocking the enduring mystery of the water cycle deep inside the Earth. Tremendous efforts have been devoted to identifying geologically viable minerals meeting stringent pressure-temperature-density stability requirements for descent into deep Earth, and such pursuits remain active. Here, we identify two hydrous iron silicates, α- and ÎČ−FeSiO4H2, formed by a reaction of Earth-abundant FeSiO3 and H2O and stabilized at the pressure-temperature conditions in cold subducting slabs. These phases have a sufficiently high density for a stable descent into the Earth's lower mantle, and then decompose to release water after reaching equilibrium with the mantle geotherm. Moreover, Mg(Fe)SiO4H2 solutions are found to be more stable than the pure substances and can serve as effective carriers to transport substantial amounts of water to lower-mantle regions via the cold subduction zones. These findings establish a viable and robust material basis for the deep-Earth water cycle, with major implications for elucidation of many prominent geological processes

    Combined helical tomotherapy and Gamma Knife stereotactic radiosurgery for high-grade recurrent orbital meningioma: a case report

    Get PDF
    Orbital meningioma is a rare type of orbital tumor with high invasiveness and recurrence rates, making it extremely challenging to treat. Due to the special location of the disease, surgery often cannot completely remove the tumor, requiring postoperative radiation therapy. Here, we report a case of an elderly male patient with right-sided proptosis, visual impairment, and diplopia. Imaging diagnosis revealed a space-occupying lesion in the extraconal space of the right orbit. Pathological and immunohistochemical examination of the resected tumor confirmed it as a grade 3 anaplastic meningioma. Two months after surgery, the patient complained of right eye swelling and a magnetic resonance imaging (MRI) scan showed a recurrence of the tumor. The patient received helical tomotherapy (TOMO) in the postoperative tumor bed and high-risk areas within the orbit with a total dose of 48Gy. However, there was no significant improvement in the patient’s right eye swelling, and the size of the recurrent lesion showed no significant change on imaging. Gamma knife multifractionated stereotactic radiosurgery (MF-SRS) was then given to the recurrent lesion with 50% prescription dose 13.5Gy/3f, once every other day. An imaging diagnosis performed 45 days later showed that the tumor had disappeared completely. The patient’s vision remained unchanged, but diplopia was significantly relieved after MF-SRS. We propose a new hybrid treatment model for recurrent orbital meningioma, where conventional radiation therapy ensures local control of high-risk areas around the postoperative cavity, and MF-SRS maximizes the radiation dose to recurrent lesion areas while protecting surrounding tissues and organs

    Analysis of the anatomic eligibility for transcarotid artery revascularization in Chinese patients who underwent carotid endarterectomy and transfemoral carotid artery stenting

    Get PDF
    ObjectiveTranscarotid artery revascularization (TCAR) is thought to be a promising technique and instrument for treating carotid stenosis with favorable outcomes. Since there remain several differences in anatomic characteristics among races, this study was conducted to investigate the anatomic eligibility of TCAR in Chinese patients who underwent carotid revascularization.MethodsA retrospective review of patients with carotid stenosis from 2019 to 2021 was conducted. The anatomic eligibility of TCAR was based on the instruction of the ENROUTE Transcarotid Neuroprotection System. The carotid artery characteristics and configuration of the circle of Willis (CoW) were evaluated by CT angiography. The demographic and clinical characteristics and procedure-related complications were recorded. Logistic regression was used to analyze the independent factors for TCAR eligibility.ResultsOf 289 consecutive patients [222 for carotid endarterectomy (CEA) and 67 for transfemoral carotid artery stenting (TF-CAS)] identified, a total of 215 patients (74.4%) met TCAR anatomic eligibility. Specifically, 83.7% had mild common carotid artery (CCA) puncture site plaque, 95.2% had 4–9 mm internal carotid artery diameters, 95.8% had >6 mm CCA diameter, and 98.3% had >5 cm clavicle to carotid bifurcation distance. Those who were female (OR, 5.967; 95% CI: 2.545–13.987; P < 0.001), were of an older age (OR, 1.226; 95% CI: 1.157–1.299; P < 0.001), and higher body mass index (OR, 1.462; 95% CI: 1.260–1.697; P < 0.001) were prone to be associated with TCAR ineligibility. In addition, 71 patients with TCAR eligibility (33.0%) were found to combine with incomplete CoW. A high risk for CEA was found in 29 patients (17.3%) with TCAR eligibility, and a high risk for TF-CAS was noted in nine patients (19.1%) with TCAR eligibility. Overall, cranial nerve injury (CNI) was found in 22 patients after CEA, while 19 of them (11.3%) met TCAR eligibility.ConclusionA significant proportion of Chinese patients meet the anatomic criteria of TCAR, making TCAR a feasible treatment option in China. Anatomic and some demographic factors play key roles in TCAR eligibility. Further analysis indicates a potential reduction of procedure-related complications in patients with high-risk carotid stenosis under the TCAR procedure

    The Ninth Visual Object Tracking VOT2021 Challenge Results

    Get PDF
    acceptedVersionPeer reviewe

    Recursively Partitioned Static IP Router-Tables ∗

    No full text
    We propose a method–recursive partitioning–to partition a static IP router table so that when each partition is represented using a base structure such as a multibit trie or a hybrid shape shifting trie there is a reduction in both the total memory required for the router table as well as in the total number of memory accesses needed to search the table. The efficacy of recursive partitioning is compared to that of the popular front-end table method to partition IP router tables. Our proposed recursive partitioning method outperformed the front-end method of all our test sets

    Packet Classification Using Pipelined Two-Dimensional Multibit Tries ∗

    No full text
    We propose heuristics for the construction of fixed- and variable-stride two-dimensional multibit tries. These multibit tries are suitable for the classification of Internet packets using a pipelined architecture. The pipelined two-dimensional multibit tries constructed by our proposed heuristics are superior, for pipelined architectures, to two-dimensional multibit tries constructed by the best algorithms proposed for non-pipelined architectures

    Succinct representation of static packet classifiers

    No full text
    We develop algorithms for the compact representation of the 2-dimensional tries that are used for Internet packet classification. Our compact representations are experimentally compared with competing compact representations for multi-dimensional packet classifiers and found to simultaneously reduce the number of memory accesses required for a lookup as well as the memory required to store the classifier.
    • 

    corecore